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Let 1 be the closed unit interval or 1=[1�n; n=1, 2, ..., �]. We give a complete
characterization of BKW-operators on C(1) for the test functions [1, t, t2].
� 1996 Academic Press, Inc.

1. INTRODUCTION

Let I be the closed unit interval [0, 1] and let C(I ) be the Banach space
of real valued continuous functions on I with the supremum norm. In [2],
Korovkin proved the following theorem; if [Tn]n is a sequence of positive
operators on C(I ) such that &Tnt j&t j&� � 0 for j=0, 1, 2, then [Tn]n

converges strongly to the identity operator; see also [3]. This theorem has
been studied from various view points; see the monograph by Altomare
and Campiti [1]. Recently as a generalization of the Korovkin theorem,
the second author [8�12] studied Bohman�Korovkin�Wulbert-type
approximation theorems for more general operators. Let X and Y be
normed spaces and let T # L(X, Y), where L(X, Y ) is the space of all
bounded linear operators from X into Y. Let S be a subset of X. Then T
is called a BKW-operator for the test functions S if for every net [T*]* # 4

of bounded linear operators in L(X, Y ) satisfying

lim
*

&T* &=&T&, lim
*

&T* f&Tf&�=0 for f # S,

it follows that [T*]* converges strongly to T on X. We denote by
BKW(X, Y; S ) the set of BKW-operators for S. When X=Y, we write
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L(X ) and BKW(X ; S ). When the set S of functions is given, we are inter-
ested in the following problem: Which operators are BKW-operators? In
[4], the first author, Takagi, and Watanabe show that when S is a
separable subset of X, we can replace in the definition of BKW-operators
the condition ``a net [T*]*'' by ``a sequence [Tn]n .'' We note that C(I ) is
a separable Banach space.

It is also interesting to determine all operators in BKW (C(I ); [1, t, t2]).
In [12], the second author gives a characterization of BKW(C(I ); [1, t]).
He also describes operators T in BKW(C(I ); [1, t, t2]) which satisfy
T1=1 and &T&=1; see also [9]. For such an operator T, there exists a
continuous function x(t) on I with 0�x(t)�1, and there exists an open
subset G of I such that 0<x(t)<1 on G, x(t)=0 or 1 for t # �G, and

(Tf )(t)={f (x(t))
(1&x(t)) f (0)+x(t) f (1)

if t # I"G
if t # G

for every f # C(I ), where �G denotes the topological boundary of G in I. By
definition, we have BKW(C(I ); [1, t])/BKW(C(I ); [1, t, t2]).

The purpose of this paper is to give a complete characterization of
operators T in BKW(C(I ); [1, t, t2]). In Section 2, we prove that such an
operator T has the following form:

(Tf )(t)=a(t) f (0)+b(t) f (1)+c(t) f (x(t)).

But we cannot expect that a(t), b(t), c(t), and x(t) are continuous. In
Section 3, we determine BKW-operators on the sequence K=[1�n;
n=1, 2, ..., �] for [1, t, t2]. To describe these operators, we need one
more term in the above form of T. The structure of BKW-operators for
[1, t, t2] is complicated. Using this characterization, we answer the
problems given in [11].

2. BKW-OPERATORS ON THE INTERVAL

Let 1 be a compact subset of I and let C(1 ) be the space of all real con-
tinuous functions on 1. In this section, we study the case 1=I, and in the
next section we study the case 1=K=[1�n; n=1, 2, ..., �]. By the Riesz
representation theorem, the dual space of C(1 ) can be identified with
M(1 ) the space of bounded real Borel measures on 1. Since M(1 ) is the
dual space, we can consider the weak*-topology on M(1). Let M1(1 )=
[+ # M(1 ); &+&�1], where &+& is the total variation norm of +. For ` # 1,
we denote by $` the unit point mass at `.

Our theorem is the following.
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Theorem 1. T # BKW(C(I ); [1, t, t2]) with &T&=1 if and only if

(Tf )(t)=a(t) f (0)+b(t) f (1)+c(t) f (x(t)) (*)

for every f # C(I ), where a, b, c, and x are real functions satisfying the
following conditions:

(i) |a|+|b|+|c|=1 on I.

(ii) 0�x�1 on I, and if x(t0)=0 or 1 for some t0 # I then c(t0)=0.

(iii) If 0<|c(t0)|<1, then |(a+b+c)(t0)|<|(a+b)(t0)|+|c(t0)|=1.

(iv) If 0<|c(t0)|<1 and 0<x(t0)<1�2, then a(t0)=0.

(v) If 0<|c(t0)|<1 and 1�2<x(t0)<1, then b(t0)=0.

(vi) a(t) $0+b(t) $1+c(t) $x(t) , t # I, moves continuously in M1(I )
with the weak*-topology.

We note that a, b, c, and x may not be continuous. The measures
a(t) $0+b(t) $1+c(t) $x(t) , 0�t�1, are continuous with respect to the
weak*-topology. Here we list some of their properties.

(a) If |c(t0)|>0, then a, b, c, and x are continuous on some
neighborhood of t0 .

(b) x(t) may not be continuous at the point t0 # I with c(t0)=0.

(c) If tn � t0 and x(tn) � 0, then a(tn)+c(tn) � a(t0).

(d) If 0<x(t0)<1 and x is continuous at t0 , then a, b, c are con-
tinuous at t0 .

To prove our theorem, we need some lemmas. Let S2=[1, t, t2] and let
S� 2 be the closed linear span of S2 in C(1). We denote by US 2

(M1(1 )) the
set of measures + # M1(1 ) such that if & # M1(1 ) and �1 f d+=�1 f d& for
every f # S2 , then +=&. US 2

(M1(1 )) is called the uniqueness set for S2 . The
condition of �1 f d+=�1 f d& for f # S2 is equivalent to the one of �1 f d+=
�1 f d& for f # S� 2 . By the definition of the uniqueness set, the following
lemma is not difficult to prove; see [4, Lemma 4; 12, Lemma 2.1].

Lemma 1. If + # US2
(M1(1 )), then &+&=1, &+ # US 2

(M1(1 )) and
1=sup[ |�1 f d+|; f # S� 2 , & f &�=1].

By Hahn�Banach theorem and Riesz representation theorem, we have
that + # US 2

(M1(1)) if and only if the norm of + as a linear functional of
S� 2 is 1 and + has a unique norm preserving extension to C(1). The fol-
lowing lemma is proved by Micchelli [5, 6]. Here we give another proof.
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Lemma 2. Let + be a positive measure on I with &+&=1. Then
+ # US2

(M1(I )) if and only if + has the form +=$x for some x # I or
+=a$0+(1&a) $1 for some a with 0<a<1.

Proof. Let

W={\|I
t d_, |

I
t2 d_+ ; _ # M1(I ), _�0, &_&=1= .

Then W is a compact convex subset of I2 and

W=[(x, y) # I 2 ; x2� y�x].

Let L1=[(x, x2) # I 2 ; 0�x�1] and L2=[(x, x) # I 2 ; 0<x<1]. Then
L1 _ L2=�W. For _ # M1(I ) with _�0, &_&=1, we have

0�\|I
t d_+

2

�|
I

t2 d_�|
I

t d_�1.

Then (�I t d_, �I t2 d_) # L1 if and only if �I t d_=(�I t2 d_)1�2. The condi-
tion is well known which guarantees the equality in Ho� lder's inequality; see
[7, p. 65]. Using this fact, we get

\|I
t d_, |

I
t2 d_+ # L1 if and only if _=$x for some x # I.

In the same way, we can prove that

\|I
t d_, |

I
t2 d_+ # L2 if and only if _=a$0+(1&a)$1 for some 0<a<1.

Hence if ` # L1 _ L2 then there exists a unique measure _` in M1(I ) such
that

`=\|I
t d_` , |

I
t2 d_`+ , _`�0, &_` &=1.

Therefore,

if ` # L1 then _`=$x for some 0�x�1, (1)

if ` # L2 then _`=a$0+(1&a)$1 for some 0<a<1. (2)

By the properties of W, we see that if ! is an interior point of W then there
are infinitely many representation of !,

!=a`1+(1&a) `2 , `1 # L1 , `2 # L2 , 0<a<1.
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This means that there are infinitely many measures _ # M1(I ) such that

!=\|I
t d_, |

I
t2 d_+ , _�0, &_&=1.

Now let + # M1(I ) with +�0. Put `=(�I t d+, �I t2 d+). Then by the
above observation and the definition of US 2

(M1(I )), + # US2
(M1(I )) if and

only if ` # L1 _ L2 . Hence by (1) and (2), we have our assertion.

Generally we have the following.

Lemma 3. + # US 2
(M1(I )) if and only if + has one of the following forms:

(i) +=\$x , 0�x�1,

(ii) +=a$0+b$1 , |a|+|b|=1,

(iii) +=a$x+b$1 , |a+b|<|a|+|b|=1 and 0<x<1�2,

(iv) +=a$0+b$x , |a+b|<|a|+|b|=1 and 1�2<x<1,

(v) +=a$0+b$1+c$1�2, |a+b+c|<|a+b|+|c|=|a|+|b|+|c|=1.

Proof. First, suppose that + # US 2
(M1(I )). By Lemma 1, &+&=1 and

1=sup {} |
1

0
f d+ } ; f # S� 2 , & f &�=1= .

Since the unit sphere of S� 2 is compact, there exists f0 in S� 2 such that

} |
1

0
f0 d+ }=1 and & f0&�=1. (3)

Write f0(t)=a0+a1 t+a2 t2. Then one of the following cases happens:

[t # I ; | f0(t)|=1]=I, (4)

[t # I ; | f0(t)|=1]=[x], 0�x�1, (5)

[t # I ; | f0(t)|=1]=[0, 1], (6)

[t # I ; | f0(t)|=1]=[x, 1], 0<x<1�2, (7)

[t # I ; | f0(t)|=1]=[0, x], 1�2<x<1, (8)

[t # I ; | f0(t)|=1]=[0, 1�2, 1]. (9)

Suppose that (4) happens. Then f0 is a constant function and f0=1 or
&1. Hence by (3), +�0 or +�0. By Lemma 1, we may assume that +�0.
By Lemma 2, + has one of the forms in (i) or (ii).

163BKW-OPERATORS



File: 640J 300106 . By:BV . Date:23:10:96 . Time:10:41 LOP8M. V8.0. Page 01:01
Codes: 2600 Signs: 1634 . Length: 45 pic 0 pts, 190 mm

It is easy to see that the case (5) yields (i) and the case (6) yields (ii).
Suppose that (7) happens. In this case, we have f0(x) f0(1)=&1. If

+([x])=0 or +([1])=0 then + has the form (i). If 0<|+([x])|<1, then
+ has the form (iii). In the same way, the case (8) yields (i) or (iv).

Suppose that (9) happens. Then f0(0)=f0(1) and f0(0) f0(1�2)=&1.
Hence + has one of the forms (i), (ii) or (v).

Next, we prove that if a measure + satisfies one of the conditions (i)�(v),
then + # US2

(M1(I )). The proof is almost the same for every case, so that
we only prove the following two cases:

(iii$) +=a$x&b$1 , a, b>0, a+b=1, and 0<x<1�2,

(v$) +=a$0+b$1&c$1�2 , a, b, c>0, and a+b+c=1.

Suppose that + has the form (iii$). Let & # M1(I ) such that
�1

0 f d+=�1
0 f d& for every f # S� 2 . Put

g(t)=&2(t&x)2�(1&x)2+1, t # I.

Then g # S� 2 , &g&�=1, g(x)=1, g(1)=&1, and

|
1

0
g d&=|

1

0
g d+=a+b=1.

Hence & has the form &=a$$x&b$$1 . Since �1
0 t j d+=�1

0 t j d& for j=0 and
1, we have a&b=a$&b$ and ax&b=a$x&b$. Therefore a=a$ and b=b$,
so that +=&. This means that + # US 2

(M1(I )).
Next, suppose that + has the form (v$). Let & # M1(I ) such that �1

0 f d+=
�1

0 f d& for every f # S� 2 . Put h(t)=8t2&8t+1. Then h # S� 2 , &h&=1,
h(0)=h(1)=1, h(1�2)=&1, and

|
1

0
h d&=|

1

0
h d+=a+b+c=1.

Hence & has the form &=a$$0+b$$1&c$$1�2 . Since �1
0 t j d+=�1

0 t j d& for
j=0, 1, 2, we have

a+b&c=a$+b$&c$, b&c�2=b$&c$�2, b&c�4=b$&c$�4.

Therefore a=a$, b=b$, and c=c$, so that we obtain + # US 2
(M1(I )).

Let T # L(C(1 )) with &T&=1. We denote by T* the dual operator of T.
Then for t # 1 we have �1 f dT* $t=(Tf )(t) for f # C(1). Hence T*$t ,
t # 1, are continuous with respect to the weak*-topology. The following
lemma is proved in [12].
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Lemma 4. Let T # L(C(T)). Then T # BKW(C(1); S2) with &T&=1 if
and only if T*$t # US2

(M1(1)) for every t # 1.

Proof of Theorem 1. Suppose that T is of the form (*), and a, b, c, and
x satisfy conditions (i)�(vi). By (vi), we have Tf # C(I ), so that T # L(C(I ))
and &T&=1. To show T # BKW(C(I ); S2), we use Lemma 4. Let t # I.
Then by (*), we have

T*$t=a(t) $0+b(t) $1+c(t) $x(t) .

By conditions (i)�(v), we know that the measure T*$t has one of the forms
in Lemma 3. Hence T*$t # US2

(M1(I )). Therefore by Lemma 4, we have
T # BKW(C(I ); S2).

To prove the converse, let T # BKW(C(I ); S2). For each t # I, by Lemma
4 we have T*$t # US 2

(M1(I )), and by Lemma 3, T has the form (*) and
all conditions (i)�(vi) are satisfied.

3. BKW-OPERATORS ON THE SEQUENCE SPACE

Let

K=[1�n; n=1, 2, ..., �],

where we use the convention 1��=0. Then K is a compact subset of I and
C(K ) is isomorphic to the space of real convergent sequences. In this sec-
tion, we determine all operators in BKW(C(K ); [1, t, t2]). According to
Theorem 1, the reader may suspect that such an operator T has the form

(Tf )(1�n)=a(1�n) f (0)+b(1�n) f (1)+c(1�n) f (x(1�n)), x(1�n) # K.

But there are some other possibilities.

Theorem 2. T # BKW(C(K ); [1, t, t2]) with &T&=1 if and only if

(Tf )=a(t) f (0)+b(t) f (1)+c(t) f (x(t))+d(t) f ( y(t)), t # K, (**)

for every f # C(K ), where a, b, c, d, x and y are real functions on K satisfying
the following conditions:

(i) |a|+|b|+|c|+|d |=1 on K.

(ii) x(K )/K, y(K )/K, x�y on K, and if x(t0)=0 or 1, t0 # K,
then c(t0)=0.

(iii) There exist subsets K1 and K2 of K with K1 _ K2=K and
K1 & K2=< such that d=0 on K1 and 0<x<1 on K2 .

165BKW-OPERATORS



File: 640J 300108 . By:BV . Date:23:10:96 . Time:10:41 LOP8M. V8.0. Page 01:01
Codes: 2640 Signs: 1554 . Length: 45 pic 0 pts, 190 mm

(iv) If 0 < |c(t0)| < 1 and t0 # K1 , then |(a + b + c)(t0)| <
|(a+b)(t0)|+|c(t0)|=1.

(v) If 0<|c(t0)|<1, t0 # K1 , and 0<x(t0)<1�2, then a(t0)=0.

(vi) x(t)&1&y(t)&1=1 for every t # K2 .

(vii) a=b=0 and |c+d |=|c|+|d |=1 on K2 .

(viii) a(t) $0+b(t) $1+c(t) $x(t)+d(t) $y(t) , t # K, are continuous with
respect to the weak*-topology.

The idea of the proof is the same as the one in Section 2. Theorem 2
follows easily from the next two lemmas. Therefore we give only their
proofs and leave the proof of Theorem 2 to the reader.

Lemma 5. Let + be a positive measure on K with &+&=1. Then
+ # US2

(M1(K )) if and only if +=$x , x # K, +=a$0+(1&a)$1 for
0<a<1, or +=a$1�n+(1&a) $1�(n+1) for 0�a�1 and 1�n<�.

Proof. The idea of the proof is the same as the one of Lemma 2. Let

V={\|K
t d_, |

K
t2 d_+ ; _ # M1(K ), _�0, &_&=1= .

Then V is a compact subset of I2 and coincides with the convex hull of the
set

[(1�n, 1�n2); n=1, 2, ..., �].

Let Li, j be the line segment connecting points (1�i, 1�i 2) and (1� j, 1� j 2)
for 1�i< j ��. Then the boundary �V of V coincides with L1, � _

(��
i=1 Li, i+1). For each point ` # �V there exists a unique measure _` in

M1(K) such that

`=\|K
t d_` , |

K
t2 d_`+ , _`�0, &_`&=1.

Moreover, if ` # Li, i+1 then _`=b$1�i+(1&b) $1�(i+1) , 0�b�1, and if
` # L1, � then _`=b$0+(1&b) $1 , 0�b�1. Also, if ` is an interior point
of V, then there exist many measures & # M1(K ) such that

`=\|K
t d&, |

K
t2 d&+ , &�0, &&&=1.

Let + # M1(K) with +�0 and &+&=1. Then we have that + # US 2
(M1(K))

if and only if (�K t d+, �K t2 d+) # �V by the above observation and the defini-
tion of the uniqueness set. Therefore we get the desired assertion.
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Lemma 6. Let + be a measure on K with &+&=1. Then + # US 2
(M1(K ))

if and only if + has one of the following forms:

(i) +=\$1�n , n=1, 2, ..., �,

(ii) +=a$0+b$1 , |a|+|b|=1,

(iii) +=a$1�n+b$1 , |a+b|<|a|+|b|=1 and 1<n<�,

(iv) +=a$0+b$1+c$1�2 , |a+b+c|<|a+b|+|c|=|a|+|b|+|c|=1,

(v) +=a$1�n+b$1�(n+1) , |a+b|=|a|+|b|=1 and 1�n<�.

Proof. Since K/I, we have M1(K )/M1(I ). By the definition of the
uniqueness set for S2 , we have

M1(K ) & US 2
(M1(I ))/US 2

(M1(K)). (1)

By Lemma 3, if + # M1(K ) & US 2
(M1(I )) then + has one of the forms

(i)�(iv) in Lemma 6. Since [1�2<x<1] & K=<, case (iv) in Lemma 3
does not happen. The measure in (v) has the form as a$1�n+b$1�(n+1) , and,
moreover, if a=0 or b=0 then this measure has the form in (i). Hence by
(1) we need to prove that

+ # US2
(M1(K ))"(M1(K) & US 2

(M1(I ))) (2)

if and only if there exists n with 1�n<� such that

+=a$1�n+b$1�(n+1) , |a+b|=|a|+|b|=1, a{0, and b{0. (3)

First, suppose that + satisfies (2). Since + # US 2
(M1(K)), by the same

way as the first paragraph of the proof of Lemma 3, there exists f0 in S� 2

such that

} |K
f0 d+ }=1, & f0&�=1.

Here it can happen that f0 is constant or f0 is nonconstant on K. When f0

is nonconstant, by the same argument as in the proof of Lemma 3, + has
one of the form in (i)�(iv). Hence + # M1(K ) & US 2

(M1(I )), so that f0 must
be constant. Then by Lemma 5, + has the forms

+=\$1�n , +=\(a$0+(1&a)$1),

or +=\(a$1�n+(1&a) $1�(n+1)).

Since + � M1(K ) & US2
(M1(I )), + has the form in (3) for some 1�n<�.
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The implication (3) O (2) follows from Lemmas 1, 3, and 5.

In [11], the second author studied the following operators on C(K ). For
each fixed positive integer m, let

(Tm f )(1�n)={&( f (1)+f (1�m))�2
f (1�(n&1))

if n=1
if 2�n��,

(Um f )(1�n)={( f (1)&f (1�m))�2
f (1�(n&1))

if n=1
if 2�n��.

He proved that T1 , T2 , Um , m�2, are contained in BKW(C(K ); [1, t, t2]).
He asked whether Tm , m�3, and U1 are BKW-operators or not. We
note that U1 is the unilateral shift operator on C(K ). As application of
Theorem 2, we have that Tm , m�3, and U1 are not BKW-operators for
S2 . Also the backward shift operator defined by

(Bf )(1�n)=f (1�(n+1)) for f # C(K )

and the operator defined by

(Tf )(1�n)=( f (1�n)+f (1�(n+1))�2

are BKW-operators for S2 .
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