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Let I” be the closed unit interval or I'={1/m; n=1,2, .., o0}. We give a complete
characterization of BKW-operators on C(I') for the test functions {l,¢,¢*}.
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1. INTRODUCTION

Let 7 be the closed unit interval [0, 1] and let C(7) be the Banach space
of real valued continuous functions on / with the supremum norm. In [2],
Korovkin proved the following theorem; if {7}, is a sequence of positive
operators on C(I) such that |7,t/—¢/|_,—0 for j=0,1,2, then {T,},
converges strongly to the identity operator; see also [3]. This theorem has
been studied from various view points; see the monograph by Altomare
and Campiti [ 1]. Recently as a generalization of the Korovkin theorem,
the second author [8-12] studied Bohman-Korovkin—Wulbert-type
approximation theorems for more general operators. Let X and Y be
normed spaces and let Te L(X, Y), where L(X, Y) is the space of all
bounded linear operators from X into Y. Let S be a subset of X. Then T
is called a BKW-operator for the test functions S if for every net {7}, ,
of bounded linear operators in L(X, Y) satisfying

m |7 =[Tl,  lm |7, f=Tf]|.=0  for feS§,

it follows that {7,}, converges strongly to 7 on X. We denote by
BKW(X, Y; S) the set of BKW-operators for S. When X =Y, we write
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L(X) and BKW(X; S). When the set S of functions is given, we are inter-
ested in the following problem: Which operators are BK W-operators? In
[4], the first author, Takagi, and Watanabe show that when S is a
separable subset of X, we can replace in the definition of BK W-operators
the condition “a net {7,},” by “a sequence {7,},.” We note that C(I) is
a separable Banach space.

It is also interesting to determine all operators in BKW (C(1); {1, ¢, £*}).
In [12], the second author gives a characterization of BKW(C(1); {1, t}).
He also describes operators 7 in BKW(C(I); {1,¢,¢*}) which satisfy
T1=1 and ||T| =1; see also [9]. For such an operator T, there exists a
continuous function x(¢) on I with 0<x(7) <1, and there exists an open
subset G of I such that 0 <x(#)<1 on G, x(¢)=0 or 1 for 1€ 0G, and

B f(x(t)) if IEI\G
(Tf)(l)_{(l—x(z))f(O)—i-X(l)f(l) if 1eG

for every fe C(I), where 0G denotes the topological boundary of G in I. By
definition, we have BKW(C(I); {1, t}) = BKW(C(I); {1, ¢, £*}).

The purpose of this paper is to give a complete characterization of
operators T in BKW(C(I); {1, 7, #*}). In Section 2, we prove that such an
operator T has the following form:

(Tf)(1) =a(1) /(0)+b(1) f(1) + c(2) f(x(2)).

But we cannot expect that a(t), b(t), ¢(t), and x(¢) are continuous. In
Section 3, we determine BKW-operators on the sequence K= {1/n;
n=1,2,..,0} for {1, ¢*}. To describe these operators, we need one
more term in the above form of 7. The structure of BKW-operators for
{1,1,¢*} is complicated. Using this characterization, we answer the
problems given in [117.

2. BKW-OPERATORS ON THE INTERVAL

Let I" be a compact subset of 7 and let C(I") be the space of all real con-
tinuous functions on 7. In this section, we study the case I'=1, and in the
next section we study the case I'=K={1/n; n=1,2, .., o0}. By the Riesz
representation theorem, the dual space of C(I”) can be identified with
M(I') the space of bounded real Borel measures on I". Since M(I") is the
dual space, we can consider the weak*-topology on M(I'). Let M ,(I")=
{ueM(I); |u| <1}, where |u| is the total variation norm of u. For (e T,
we denote by J, the unit point mass at (.

Our theorem is the following.
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THeOREM 1. TeBKW(C(I); {1, ¢*}) with |T| =1 if and only if

(TF)(1) = a(1) f(0) + b(2) f(1) + c(2) f(x(2)) (#)

for every fe C(I), where a,b,c, and x are real functions satisfying the
following conditions:

(1) lal+1bl+|c|=1o0n L
(1) 0<x<1onl, and if x(t,) =0 or 1 for some t eI then c(t,)=0.
(i) If0<|e(ty)l <1, then [(a+b+c)(ty)| <|(a+b)(ty)| + |c(ty)| =1.
(iv) If0<|e(ty)| <1 and 0 <x(t,) <1/2, then a(t,)=0.
) If0<|c(ty)|l <1 and 1/2 < x(t,) <1, then b(t,)=0.

(vi) a(t) 0o+ b(t) 0,4 c(t) 0y, tel, moves continuously in M (I)
with the weak*-topology.

(v

We note that a,b,c, and x may not be continuous. The measures
a(t) 0o+ b(t) 6, +c(t) 0, 0<t<1, are continuous with respect to the
weak *-topology. Here we list some of their properties.

(a) If |c(ty)| >0, then a,b,c¢, and x are continuous on some
neighborhood of ¢,.

(b) x(7) may not be continuous at the point ¢, e I with ¢(z,) =0.
(c) Ift,—t,and x(z,)— 0, then a(t,) + c(t,) — a(t,).

(d) If 0<x(ty)<1 and x is continuous at ¢,, then a, b, ¢ are con-
tinuous at ¢,.

To prove our theorem, we need some lemmas. Let S,={1, 7, lz} and let
S, be the closed linear span of S, in C(I'). We denote by U, (M (I")) the
set of measures u e M,(I') such that if ve M (I") and |, fdu={, fdv for
every feS,, then p=v. Ug,(M,(I)) is called the uniqueness set for S,. The
condition of |, fdu =, fdv for €S, is equivalent to the one of |, fdu =
j ,fdv for feS,. By the definition of the uniqueness set, the following
lemma is not difficult to prove; see [4, Lemma 4; 12, Lemma 2.1].

Lemma 1. If luegSz(Ml(F))’ then |ul=1, —peUs,(M\(I')) and
V=sup{|f, fdul; f€S,, [lf]l..=1}.

By Hahn-Banach theorem and Riesz representation theorem, we have
that ue Ug,(M (1)) if and only if the norm of x as a linear functional of
S, is 1 and x has a unique norm preserving extension to C(I"). The fol-
lowing lemma is proved by Micchelli [5, 6]. Here we give another proof.
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LEMMA 2. Let u be a positive measure on I with |u|=1. Then
ueUs,(M\(I)) if and only if u has the form p=9, for some xel or
u=ady+ (1—a)d, for some a with 0 <a<1.

Proof. Let

W= frda,fzzda cgeM(I), 020, o] =1
I I

Then W is a compact convex subset of I? and
W={(x,y)el’; x*< y<x}.

Let L, ={(x,x*)el?; 0<x<1} and L,={(x,x)el?; 0<x<1}. Then

L,uL,=0W. For ge M,(I) with ¢ =20, ||g] =1, we have

0<<f zda>2<J tzdasf tdo<1.
I I I

Then ({,1do, |,t*do)eL, if and only if {,do=(|,t* ds)"* The condi-
tion is well known which guarantees the equality in Holder’s inequality; see
[7, p. 65]. Using this fact, we get

<f t do, J ? da> el ifand only if ¢ =6, for some x € I.

1 1

In the same way, we can prove that

<f zda,j 2 da>eL2 if and only if 0 = ady + (1 —a)d, for some 0 <a < 1.
1 1

Hence if (e L, U L, then there exists a unique measure g, in M () such
that

C=<Jtdag,ft2da(>, 5:20, |o.|=1.

1 1

Therefore,
if{eL, theno,=0 forsome0<x<1, (1)
if{eL, theno,=ad,+(1—a)d, forsomel<a<]l. (2)

By the properties of W, we see that if £ is an interior point of W then there
are infinitely many representation of ¢,

E=al,+(1—a)l,, (ieL,, (eLl,, O0<a<l.
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This means that there are infinitely many measures o € M,(/) such that

=<jzda,jz2da>, =0, |o|=1
I I

Now let ueM,(I) with £u>0. Put {=({,tdu, |, du). Then by the
above observation and the definition of Ug,(M (1)), u € Ug,(M,([1)) if and
only if (e L, u L,. Hence by (1) and (2), we have our assertion.

Generally we have the following.

LemMA 3. ue U, (M (1)) if and only if i has one of the following forms:
(i) u=+9,,0<x<],
(i) w=ady+bd,, la|+|b|=1,
(ili) u=aod,+bo,, la+bl<lal+|b|=1and 0<x<1/2,
(Iv) u=ady+bo,, la+b|<l|al+1b|=1and 12<x<1,
(V) u=ady+bd,+cb,,, lat+b+c|<|a+b|+]|c|=|al+|b|+]|c|=1.
Proof. First, suppose that ye Ug,(M,(/)). By Lemma 1, ||u[| =1 and

t=sup {|[[ sl

;feg2’ |f|w:1}

Since the unit sphere of S, is compact, there exists f, in S, such that

J, fodu|=1 and Sl =1. (3)

Write f(¢) = a,+a,t+ a,t>. Then one of the following cases happens:

{tel;|fo()|=1} =1, (4)
(tel; |fy()] =1} ={x}, 0o<x<l, (5)
{teL; |fo(t)| =1} ={0, 1}, (6)
(tel; |fy()] =1} ={x, 1}, O0<x<l/2, (7)
{tel |fy(nl =1} ={0,x}, 12<x<l, 8)
el 1fu(0l =1} = {0,1/2, 1} (9)

Suppose that (4) happens. Then f; is a constant function and f,=1 or
—1. Hence by (3), x>0 or u<0. By Lemma 1, we may assume that x> 0.
By Lemma 2, u has one of the forms in (i) or (ii).
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It is easy to see that the case (5) yields (i) and the case (6) yields (ii).

Suppose that (7) happens. In this case, we have fy(x) fo(1)=—1. If
u({x})=0 or u({1})=0 then x has the form (i). If 0 < |u({x})| <1, then
4 has the form (iii). In the same way, the case (8) yields (i) or (iv).

Suppose that (9) happens. Then f,(0)=f,(1) and f,(0) f,(1/2) =
Hence i has one of the forms (i), (ii) or (v).

Next, we prove that if a measure u satisfies one of the conditions (i)—(v),
then pe Ug,(M,(I)). The proof is almost the same for every case, so that
we only prove the following two cases:

(ii') u=ad,—bo,,a,b>0,a+b=1,and 0<x<1/2,
(V') w=ady+bd,—cd,pn, a,b,c>0,and a+b+c=1.
Suppose that u has the form (iii’). Let ve M, (I) such that
[6 fdu=\}fdv for every fe§,. Put
g(t)= =2(t—x)*/(1 —=x)>+1, tel

Then ge S, |gll..=1, g(x)=1, g(1)= —1, and
1 1
Jgdv=j gdu=a+b=1.
0 0

Hence v has the form v=a'6,—b'6,. Since |4t/ du =4t/ dv for j=0 and
1, we have a—b=a' —b' and ax —b=a'x —b'. Therefore a=a’ and b=17',
so that u =v. This means that u e Ug,(M,(1)).

Next, suppose that x has the form (v'). Let ve M, (I) such that {4 fdu =
fofdv for every feS,. Put h(t)=8:*—8t+1. Then hel,, |h|=1,
W0)=h(1)=1, h(1/2)= —1, and

1hdv= 1ha’,u=a—i—b—i—c=1.
J, =,

Hence v has the form v=da'd,+b'0,—¢'d,,. Since [§t/du= 4t/ dv for
j=0,1,2, we have

a+b—c=d+b —¢, b—c2=b"—(')2, b—c/A=b"—c"/4

Therefore a=a', b=">', and ¢ = ¢/, so that we obtain ue Uy, (M,(1)).

Let Te L(C(I')) with |T| =1. We denote by T* the dual operator of T.
Then for tel” we have |, fdT*d,=(Tf)(t) for fe C(I'). Hence T*5,,
te I, are continuous with respect to the weak*-topology. The following
lemma is proved in [ 12].
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LemMMA 4. Let Te L(C(T)). Then Te BKW(C(I'); S,) with |T| =1 if
and only if T*6,€ Ug,(M(I')) for every tel.

Proof of Theorem 1. Suppose that T is of the form (# ), and a, b, ¢, and
x satisfy conditions (i)—-(vi). By (vi), we have Tfe C(I), so that Te L(C(I))
and |T| =1. To show Te BKW(C(I);S,), we use Lemma 4. Let tel
Then by (# ), we have

T*S,=a(t) 8o+ b(1) 6, + (1) .-

By conditions (i)—(v), we know that the measure 7*J, has one of the forms
in Lemma 3. Hence 7%J,€ Ug,(M,([I)). Therefore by Lemma 4, we have
TeBKW(C(I); S,).

To prove the converse, let Te BKW(C([/); S,). For each ¢ e I, by Lemma
4 we have T*0,e€ Ug,(M (1)), and by Lemma 3, T has the form (#) and
all conditions (i)—(vi) are satisfied.

3. BKW-OPERATORS ON THE SEQUENCE SPACE

Let
={l/m;n=12, .., w0},
where we use the convention 1/o0 =0. Then K is a compact subset of / and
C(K) is isomorphic to the space of real convergent sequences. In this sec-

tion, we determine all operators in BKW(C(K); {1, ¢, #*}). According to
Theorem 1, the reader may suspect that such an operator 7 has the form

(Tf)(1/n) = a(1/n) £(0) + b(1/n) f(1) + c(1/n) f(x(1/n)),  x(1/n)eK.

But there are some other possibilities.
THEOREM 2. TeBKW(C(K); {1,1,*}) with | T| =1 if and only if

(Tf) = a(?) f(0) +b(2) f(1) + c(2) f(x(0)) +d(0) f(¥(2),  teK, (##)

for every fe C(K), where a, b, ¢, d, x and y are real functions on K satisfying
the following conditions:

(1) lal+1b]+lcl+1d]=1 on K.

(ii) x(K)cK, yK)cK, x<y on K, and if x(t,)=0 or 1, t ek,
then c(t,) =

(1) There exist subsets K, and K, of K with K, U K,=K and
K,nK,= such that d=0 on K, and 0<x<1 on K,.
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(av) If 0<|e(ty) <1 and tyeK,, then |(a+b+ c)(ty)l <
l(a+b)(to)| + c(to)| = 1.
(v) If0<|c(ty)| <1, tyeK,, and 0 < x(t,) <1/2, then a(t,)=0.
(vi) x(2) " '=y(t)"'=1 for every te K,.
(vii) a=b=0and |c+d|=]c|+|d|=1 on K.
(viii) a(t) 69+ b(1) 61+ c(t) O, +d(1) 6, t €K, are continuous with
respect to the weak*-topology.

The idea of the proof is the same as the one in Section 2. Theorem 2
follows easily from the next two lemmas. Therefore we give only their
proofs and leave the proof of Theorem 2 to the reader.

LEMMA 5. Let pu be a positive measure on K with |u|=1. Then
ueUg, (M (K)) if and only if u=o6,, xeK, p=ad,+(1—a)é, for
O<a<l,orp=ad,,+(1—a)d, ) for 0<a<land 1<n<co.

Proof. The idea of the proof is the same as the one of Lemma 2. Let

V= {(j  do, f 2 da>; ceM,(K), s3>0, o] = 1}.
K K

Then V is a compact subset of I? and coincides with the convex hull of the

set

{(n, 1n*);n=1,2, .., 0}.

Let L, ; be the line segment connecting points (1/i, 1/i*) and (1/j, 1//?)
for 1 <i<j<oo. Then the boundary 0V of V coincides with L, U
(U= L; ;1) For each point {0V there exists a unique measure o, in

M ,(K) such that

(= J tday,j t*do; ), g:20, |o. =1
K Tk ’ )

Moreover, if {eL,,;,, then a,=b0,,+(1—=5b)d,,;,,), 0<b<]1, and if
(eL, , then o,=bdy+(1—=5b)d,, 0<b<1. Also, if { is an interior point
of V, then there exist many measures ve M,(K) such that

— 2 —
c_<fthv,sz dv>, p=0, v =1.

Let ue M(K) with 4> 0 and ||u|| = 1. Then we have that u € U, (M (K))
if and only if ([ 7 du, [ t* du) € 0V by the above observation and the defini-
tion of the uniqueness set. Therefore we get the desired assertion.
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LeEmMMA 6. Let pu be a measure on K with ||| = 1. Then ue Ug,(M,(K))
if and only if u has one of the following forms:
(i) u==6y,,n=12,.., 0,
(i) w=ady+bd,, la|+|b|=1,
(i) p=aod,,+bd,, la+b|<l|a|l+|b|=1and 1 <n< oo,
(iv) pu=ady+bo,+cd,p, la+b+c|<|la+b|+|c|=lal+|b| +|c| =1,
(V) m=ad,,+bd, 1), lat+b|=lal+[b|=1and 1 <n<oo.

Proof. Since K<1, we have M ,(K)<= M ,(I). By the definition of the
uniqueness set for S,, we have

v
A\

M\(K) N Us,(M,(1I)) € Ug,(M,(K)). (1)

By Lemma 3, if pue M (K)n Us,(M,(I)) then u has one of the forms
(i)-(iv) in Lemma 6. Since {1/2<x<1} nK=(J, case (iv) in Lemma 3
does not happen. The measure in (v) has the form as ad,,, +bJ,,,, . ,, and,
moreover, if a=0 or b =0 then this measure has the form in (i). Hence by
(1) we need to prove that

pe Usy(My(K)\(M,(K) A U, (M,(I))) (2)

if and only if there exists n with 1 <n < oo such that
u=ad,+bby, 1), la+b|=lal+1b| =1, a#0,andb#0. (3)
First, suppose that u satisfies (2). Since ue Ug,(M(K)), by the same

way as the first paragraph of the proof of Lemma 3, there exists f, in S,
such that

[ ot =1 1=,
K

Here it can happen that f, is constant or f; is nonconstant on K. When f;
is nonconstant, by the same argument as in the proof of Lemma 3, u has
one of the form in (i)-(iv). Hence pe M (K) n Uy, (M (1)), so that f, must
be constant. Then by Lemma 5, x has the forms

u=+£0y,, u= *(ady+(1—a)d,),
u

= i(aél/n_i_(l —a) 51/(n+1))-

Since u ¢ M (K) N Us,(M (1)), 1 has the form in (3) for some 1 <n < 0.
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The implication (3)=>(2) follows from Lemmas 1, 3, and 5.

In [11], the second author studied the following operators on C(K). For
each fixed positive integer m, let

(f(1) +f Im))2if n=1
(T, f)(1/n)= {f (1/(n— if 2<n< oo,

(W = {0 f(l/m))/2 it n=1
f(1)(n—1)) if 2<n<oo.

He proved that T, T,, U,,, m =2, are contained in BKW(C(K); {1, 7, £*}).
He asked whether T,,, m>=3, and U, are BKW-operators or not. We
note that U, is the unilateral shift operator on C(K). As application of
Theorem 2, we have that 7,,, m>3, and U, are not BKW-operators for
S,. Also the backward shift operator defined by

(Bf)(1/n)=f(1/(n+1))  for feC(K)
and the operator defined by

(THA/n)=(f(1/n) +/(1/(n+1))/2
are BK W-operators for S,.
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